|
当今,脉冲雷达系统频繁使用脉冲压缩技术。该技术能将出色的距离分辨率与低峰值功率电平下的长探测距离相结合。为此,发射脉冲通过脉内调制扩展发射信号的带宽和时间。而在雷达接收机中使用匹配滤波器压缩接收到的回波信号,并按脉冲压缩比值提高接收信号的峰值(图1)。这种方法可以按压缩比值提高雷达时间分辨率与距离分辨率。这也降低了雷达对高脉冲峰值功率电平的需求,进而减少使用高功率放大器并降低了供电的复杂性。 但增加脉宽会使雷达盲区范围增加,并且影响多普勒效应下的测距精度。此外,雷达系统中的信号处理单元变得更为复杂。依赖不同的脉冲调制方式,压缩脉冲不仅有一个窄的时间峰(即主瓣),而且出现一些旁瓣(又称为时域旁瓣或距离旁瓣)。这些可能引发虚警或者显示成“虚假”的目标反射。尽管有这些缺点,但脉压技术利大于弊,如今已被广泛使用。 典型的传输信号类型包括线性调频(LFM,或称线性调频脉冲)、非线性调频、二相编码信号和多相位编码脉冲信号。比如,使用巴克码的二进制移相键控 (BPSK) 就属于二相编码信号。尽管业界现已开发出更为复杂的脉压技术,但线性调频和巴克码仍在广泛使用。就纯粹的线性调频而言,压缩脉冲显示 sin(×)/× 响应,其最高时域旁瓣的电平理论上应比主瓣电平低 13.2dB。此比率也称为峰值旁瓣电平比 (PSL)。峰值旁瓣电平比代表雷达系统辨别邻近大小目标的能力。图2所示为线性调频脉冲宽度约为38MHz的线性调频压缩脉冲波形以及脉间频率和相位特征。 测量挑战 雷达使用脉冲压缩后,仅衡量脉宽或上升和下降时间,已经无法充分对雷达性能进行测量评估。任何与理想线性调频信号频率偏差、Tx通道失配反射、相位和幅度失真或调制器误差都将影响雷达的性能,如距离分辨率和测距精度。这些影响可能导致压缩脉冲的主瓣变宽或者增加旁瓣电平和额外的旁瓣,超出容许阈值。 由于脉内添加了线性调频、二进制移相键控和多相位编码码调制方式,工程师可能倾向于将其视为通信信号并应用用于测量通信信号质量的矢量幅度误差 (EVM) 指标进行度量。但是,矢量幅度误差不能直观地转变成雷达的性能参数,如空间分辨率或虚警率。要评估脉冲压缩雷达的性能,直接分析主、旁瓣行为的做法不失为一个好的选择。为了诊断系统性能下降的根源,需要在系统信号调理的各个点进行测试。而使用参考目标,只观察雷达接收器最终的处理输出是不够的。必须使用测量仪器(通常为信号分析仪)进行标准脉冲分析,但这还是不够。信号分析仪还必须分析使用适合的匹配滤波器和应用相关计算来分析传输信号,模拟理想雷达接收器运作方式。 经过了脉冲压缩计算后,显示时域的压缩脉冲曲线(图2和图3)。脉冲响应(主瓣)变宽导致距离分辨率变差,以及旁瓣电平和峰值旁瓣电平比都很容易观测到。此外,也可显示脉宽内的频率误差和相位误差曲线。如果发射信号为线性调频信号,则可以通过频率误差直接度量频率斜率的线性度。
版权声明: 《华体会体育推荐 》网站的一切内容及解释权皆归《华体会体育推荐 》杂志社版权所有, 未经书面同意不得转载,违者必究! 《华体会体育推荐 》杂志社。 |
|
友情链接 |
首页 | 关于我们 | 联络我们 | 加入我们 | 服务条款 | 隐私声明 Copyright© 2024: ; All Rights Reserved. 粤公网安备 44030402004704号 备案序号:粤ICP备12025165号-4 |