|
(本页是纯文字版,点此阅读完整版全文) 用于小信号GaN HEMT建模的非线性算法 Ziyue Ding、Haiyi Cai、Jincan Zhang、Yuhao Ren、Jinchan Wang,河南科技大学 电子信息产业日新月异,与半导体器件的蓬勃发展密不可分。1-3 GaN HEMT(氮化镓高电子迁移率晶体管)具有宽频带、高电子迁移率、高耐压性以及能在高温下可靠工作等优点,被广泛应用于大功率和高频电路中。4-11 GaN HEMT的精确建模是器件和电路设计的必要条件,而大信号建模的准确性在很大程度上取决于小信号模型。12,13因此,必须进行小信号建模,并准确提取和优化小信号模型参数。14,15 自2000年以来,具有代表性的GaN HEMT小信号模型和参数提取方法相继被提出。16,17目前,GaN HEMT小信号模型的参数提取方法主要包括直接提取18-20和数值优化21-23。为了快速准确地提取GaN HEMT小信号模型参数,本文采用直接提取法提取寄生参数。然后,采用改进的PSO(粒子群优化)算法提取和优化本征参数。24 PSO算法有很多优点,比如易于实现、可调参数少,而且经常被应用于很多领域。26,27然而,标准PSO算法存在收敛过早和容易陷入局部最优的问题。28,29 针对这一问题,Clerc和Kennedy30提出利用约束因子λ来控制算法的收敛速度。这一策略在一定程度上改善了标准PSO算法的性能,但在高度复杂和高纬度(high-latitude)的优化问题中,仍容易陷入局部最优。为了更好地改善算法过早收敛和陷入局部最优的倾向,本文介绍了一种非线性DAIW-PSO(动态自适应惯性权重-粒子群优化)算法,用于提取和优化GaN HEMT小信号模型的本征参数。31 小信号模型 GaN HEMT小信号等效电路模型分为两部分,如图1所示。图中,虚线框内为本征电路模型,框外为寄生电路模型。寄生元件主要包括寄生电容(Cpg、Cpd、Cpgd)、寄生电感(Lg、Ld、Ls)和寄生电阻(Rg、Rd、Rs)。本征元件主要包括栅极-源极电容(Cgs)、栅极-漏极电容(Cgd)、漏极-源极电容(Cgs)、本征电阻(Ri)、漏极-源极电阻(Rds)、栅极-漏极电阻(Rgd)、跨电导(Gm)、时间延迟常数(τ)、栅极-漏极差分电导(Ggdf)和漏极-源极差分电导(Ggsf)。 小信号模型参数提取 寄生参数提取 分别提取寄生电容、寄生电感和寄生电阻的值。寄生电容是在VGS=-3V、VDS=0V或VGS=-2.75V、VDS=0V的截止条件和低频状态下提取的。32在此条件下,寄生电阻和寄生电感可忽略不计,器件主要表现出电容特性,因此可以提取寄生电容。 剔除寄生电容的影响后,在无偏置条件下(VGS=0V,VDS=0V)提取寄生电感。在剔除寄生电容和寄生电感的影响后,使用反向截止法提取寄生电阻,此时VGS=-2.5V,VDS=0V。这种提取技术不依赖于肖特基栅极结的正偏压,从而消除了大栅极电流引起的栅极劣化。 DAIW-PSO算法 PSO算法随机定义无质量和无体积粒子,以确定最优解。每个粒子有两个向量:速度和位置。在迭代过程中,每个粒子根据适应度函数更新局部最优值(pbest),粒子群根据所有局部最优值找到全局最优值(gbest)。粒子根据自身经验和粒子群的经验不断调整速度和位置。粒子在公式1和公式2所描述的迭代过程中更新其速度和位置: 其中:vit是粒子的速度;xit是粒子的位置;pit是局部最优;git为全局最优;c1和c2是学习因子;r1和r2是随机数,通常在[0-1]的范围内;ω是惯性权重系数,通常取值范围为[0.4-0.9]。 惯性权重系数ω对调节全局搜索和局部搜索非常重要。当ω值较大时,粒子群可以在确定的范围内进行最广泛的搜索。当ω值较小时,粒子群可以在确定的较小范围内进行精细的局部搜索。标准PSO算法的惯性权重系数是固定的,因此该算法不能很好地平衡全局搜索和局部搜索,存在收敛过早和容易陷入局部最优的问题。 Shi和Eberhart33提出了一种惯性权重线性递减的PSO算法,以提高算法的搜索能力。然而,实际优化过程中粒子群的运动轨迹比较复杂,线性递减的惯性权重无法反映实际的优化搜索过程。考虑到这一问题,本文采用非线性动态自适应惯性权重来改进PSO算法,产生了DAIW-PSO算法。 在DAIW-PSO算法中,演变离散度用于描述粒子群演变过程中总体适合度值的变化。第t代群与第(t-1)代群之间适合度值的标准偏差被定义为演变离散度k(t)。31如公式3所示: 如公式4所示,sigmoid函数S(x)在线性和非线性之间取得了很好的平衡,是一个很好的阈值函数31: DAIW系数是通过离散化函数和sigmoid函数的共同演变得到的。31其惯性权重系数见公式5: 其中:ωmax是最大惯性权重系数(通常取0.9);ωmin是最小惯性权重系数(通常取0.4);t是当代迭代次数;Tmax是最大迭代次数;b是阻尼系数,用于调整k(t)的平滑度。 DAIW-PSO算法用于提取器件模型的固有参数部分。其具体流程如图2所示。 内在参数提取 通过去嵌入剔除寄生参数的影响后,在特定偏置条件下使用DAIW-PSO算法,利用公式6至公式9提取和优化固有参数。 其中:Yint,11、Yint,12、Yint,21和Yint,22是本征电路模型的Y参数;Ygs是栅-源导纳;Ygd是栅-漏导纳;Yds为漏-源导纳;Ygm是本征电导。 由此可推导出公式10至公式12: Cgs的值是根据公式10的斜率求得的,如图3所示,Rgsf是根据其截距求得的。Cds和Cgd的值分别来自公式11和12的斜率。Rds、τ和Gm值可从公式13至公式15中求得: Rgd,Cgd和RCigs的值由公式16和公式17实部的斜率得出,从而得到Rgd和Ri的值,Rgdf的值由公式16实部的截距得出。 实验结果 GaN HEMT器件用于验证0.5-20.5GHz频率范围内的小信号模型。该器件使用晶圆外精密短路/开路/负载标准进行校准。Keysight E3631A电源用于提供直流偏置电压,S参数使用Keysight N522A矢量网络分析仪测量。在Keysight ADS软件中构建了GaN HEMT 19参数小信号模型,用于参数仿真。在MATLAB软件中构建了优化算法,以提取和优化固有参数。 在提取寄生参数和本征参数值后,将参数值代入小信号ADS模型即可获得S参数。为了更直观地了解PSO算法和DAIW-PSO算法在参数优化方面的性能,图4至图6中的史密斯图对建模结果和测量结果进行了比较。在三种偏置条件下,使用DAIW-PSO算法提取的参数建模误差较小,接近测量结果。 对所开发模型的误差分析由公式18得出: 其中:N表示在扫描频率范围内选择的测量点数量;Sijmeas(fk)表示实际测量的S参数;Sijmodel(fk)表示根据本文建立的小信号模型仿真得到的S参数值。 表1显示了GaN HEMT参数的误差。与单独使用PSO算法相比,使用DAIW-PSO算法提取的参数仿真得到的S参数误差更小,优化结果更好。 结论 为了准确描述GaN HEMT器件的小信号特性,我们采用DAIW-PSO算法来提取和优化其内在参数。DAIW-PSO算法结合了演变离散度k(t)和sigmoid函数,以获得非线性动态自适应惯性权重因子,从而优化标准PSO算法。DAIW-PSO算法明显改善了标准PSO算法的性能。实验结果表明,使用DAIW-PSO算法提取的参数建立的S参数模型与0.5-20.5GHz范围内的测量结果非常接近,这验证了该算法的准确性和有效性。DAIW-PSO算法还有助于提取和优化GaN HEMT小信号模型参数。 致谢 本研究得到了河南省科技厅基金的资助(批准号:232102211066)。 参考文献 1. J. Zhang, X. Hou, M. Liu, S. Yang, B. Liu, J. Wang and J. Zhang, “Hybrid Small-Signal Modeling of GaN HEMTs Based on Improved Genetic Algorithm,” Microelectronics Journal, Vol. 127, September 2022. 2. S. Husain, A. Khusro, M. Hashmi, G. Nauryzbayev and M. A. Chaudhary, “Demonstration of CAD Deployability for GPR Based Small-Signal Modelling of GaN HEMT,” IEEE International Symposium on Circuits and Systems, May 2021. 3. A. Majumdar, S. Chatterjee, S. Chatterjee, S. S. Chaudhari and D. R. Poddar, “An Ambient Temperature Dependent Small Signal Model of GAN HEMT Using Method of Curve Fitting,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 12, December 2020. 4. J. Zhang, S. Wang, M. Liu, B. Liu and J. Wang, “An Improved GaN P-HEMT Small-Signal Equivalent Circuit with its Parameter Extraction,” Microelectronics Journal, Vol. 112, June 2021. 5. Z. Hu, Q. Zhang, K. Ma, R. He and F. Feng, “An Improved Compact Large-Signal GaN HEMT Model for Switch Application,” IEEE Transactions on Electron Devices, Vol. 69, No. 6, June 2022, pp. 3061–3067. 6. Y. S. Chauhan, A. Pampori, R. Dangi, P. Kushwaha, E. Yadav and S. Sinha, “A Turnkey Large-Signal Model for Amplifier Design in 5G Spectra using AlGaN/GaN HEMTs,” IEEE Electron Devices Technology & Manufacturing Conference, March 2022, pp. 354–356. 7. A. Jadhav, T. Ozawa, A. Baratov, J. T. Asubar, M. Kuzuhara, A. Wakejima, S. Yamashita, M. Deki, S. Nitta, Y. Honda, H. Amano, S. Roy and B. Sarkar, “Modified Small Signal Circuit of AlGaN/GaN MOS-HEMTs Using Rational Functions,” IEEE Transactions on Electron Devices, Vol. 68, No. 12, December 2021, pp. 6059–6064. 8. A. Khusro, S. Husain, M. S. Hashmi, A. Q. Ansari and S. Arzykulov, “A Generic and Efficient Globalized Kernel Mapping-Based Small-Signal Behavioral Modeling for GaN HEMT,” IEEE Access, Vol. 8, October 2020, pp. 195046–195061. 9. A. Jarndal, M. A. Alim, A. Raffo and G. Crupi, “2‐mm‐Gate‐Periphery GaN High Electron Mobility Transistors on SiC and Si Substrates: A Comparative Analysis from a Small‐Signal Standpoint,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 6, June 2021. 10. J. Kim, “A New GaN HEMT Small-Signal Model Considering Source via Effects for 5G Millimeter-Wave Power Amplifier Design,” Applied Sciences, Vol. 11, No. 19, 11(19), September 2021. 11. Y. Chen, Y. Xu, Y. Luo, C. Wang, Z. Wen, B. Yan and R. Xu, “A Reliable and Efficient Small‐Signal Parameter Extraction Method for GaN HEMTs,” International Journal Numerical Modelling – Electronic Networks, Devices and Fields, Vol. 33, No. 3, May/June 2020. 12. M. Al Sabbagh, M. C. E. Yagoub and J. Park, “New Small-Signal Extraction Method Applied to GaN HEMTs on Different Substrates,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 9, September 2020. 13. H. Cai, J. Zhang, M. Liu, S. Yang, S. Wang, B. Liu and J. Zhang, “Adaptive Particle Swarm Optimization Based Hybrid Small-Signal Modeling of GaN HEMT,” Microelectronics Journal, Vol. 137, July 2023. 14. A. Jarndal, “On Modeling of Substrate Loading in GaN HEMT Using Grey Wolf Algorithm,” Journal of Computational Electronics, Vol. 19, No. 2, February 2020, pp. 576–590. 15. A. Jarndal and A. S. Hussein, “On Reliable Modeling of Substrate/Buffer Loading Effects in a Gallium Nitride High-Electron-Mobility Transistor on Silicon Substrate,” Journal of Computational Electronics, Vol. 20, No. 1, February 2021, pp. 503–514. 16. A. Jarndal and G. Kompa, “A New Small-Signal Modeling Approach Applied to GaN Devices,” IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 11, November 2005, pp. 3440–3448. 17. E. Chigaeva, W. Walthes, D. Wiegner, M. Grozing, F. Schaich, N. Wieser, M. Berroth, O. Breitschadel, L. Kley, B. Kuhn, F. Scholz, H. Schweizer, O. Ambacher and J. Hilsenbeck, “Determination of Small-Signal Parameters of GaN-Based HEMTs,” IEEE/ Cornell Conference on High Performance Devices, August 2000. 18. Z. Wen, Y. Xu, C. Wang, X. Zhao and R. Xu, “An Efficient Parameter Extraction Method for GaN HEMT Small‐Signal Equivalent Circuit Model,” International Journal of Numerical Modelling of Electronic Networks, Devices and Fields, Vol. 30, No. 1, January/February 2017. 19. S. Husain, A. Jarndal, M. Hashmi and F. M. Ghannouchi, “Accurate, Efficient and Reliable Small-Signal Modeling Approaches for GaN HEMTs,” IEEE Access, Vol.11, September 2023, pp. 106833–106846. 20. L. Zhai, H. Cai, S. Wang, J. Zhang and S. Yang, “A Reliable Parameter Extraction Method for the Augmented GAN High Electron Mobility Transistor Small‐Signal Model,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 8, August 2022. 21. Y. Liu, F. Cao, X. Xiong, J. Huang and W. Deng, “Parameter Extraction for Small‐Signal Model of GaN HEMTS on SiC Substrates Based on Modified Firefly Algorithm,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 12, December 2022. 22. A. Majumder, S. Chatterjee, S. Chatterjee, S. Sinha Chaudhari and D. R. Poddar, “Optimization of Small-Signal Model of GaN HEMT by Using Evolutionary Algorithms,” IEEE Microwave Wireless Components Letters, Vol. 27, No. 4, April 2017, pp. 362–364. 23. A. Majumdar, S. Chatterjee, S. Bose, S. Chatterjee, S. S. Chaudhari and D. R. Poddar, “Differential Evolution Based Small Signal Modeling of GaN HEMT,” International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 6, June 2019. 24. R. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, October 1995. 25. T. Zong, J. Li and G. Lu, “Identification of Hammerstein–Wiener Systems with State-Space Subsystems Based on the Improved PSO and GSA Algorithm,” Circuits Systems and Signal Processing, Vol. 42, No. 5, December 2022, pp. 2755–2781. 26 D. Subramoney and C. N. Nyirenda, “Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog Environments,” IEEE Access, Vol. 10, November 2022, pp. 117199–117214. 27. S. Chen, C. Zhang and J. Yi, “Time-Optimal Trajectory Planning for Woodworking Manipulators Using an Improved PSO Algorithm,” Applied Sciences, Vol. 13, No. 18, September 2023. 28. Q. Zheng, B. -W. Feng, Z. -Y. Liu and H. -C. Chang, “Application of Improved Particle Swarm Optimization Algorithm in Hull Form Optimization,” Journal of Marine Science and Engineering, Vol. 9, No. 9, September 2021. 29. X. Jinwei, J. Chengpeng, C. Zhizhao and X. Wendong, “Improved Particle Swarm Optimization Algorithm with Fireworks Search,” 41st Chinese Control Conference, July 2022. 30. M. Clerc and J. Kennedy, “The Particle Swarm - Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, February 2002, pp. 58–73. 31. S. Wang and G. Liu, “A Nonlinear Dynamic Adaptive Inertial Weight Particle Swarm Optimization,” Computer Simulation, Vol. 38, No. 4, 2021. 32. B. L. Ooi and J. Y. Ma, “Consistent and Reliable MESFET Parasitic Capacitance Extraction Method,” IEEE Proceedings - Microwaves Antennas and Propagation, Vol. 151, No. 1, March 2004, pp. 81–84. 33. Y. Shi and R. Eberhart, “A Modified Particle Swarm Optimizer,” IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, May 1998. 图1:GaN HEMT小信号模型等效电路。 图2:DAIW-PSO优化内在参数算法流程图。 图3:B与w的关系图2 图4:VGS=0V、VDS=10V时的S参数建模结果。 图5:VGS=-1V,VDS=12V时的S参数建模结果。 图6:VGS=-1V、VDS=14V时的S参数建模结果。 表1:GaN HEMT参数误差
版权声明: 《华体会体育推荐 》网站的一切内容及解释权皆归《华体会体育推荐 》杂志社版权所有, 未经书面同意不得转载,违者必究! 《华体会体育推荐 》杂志社。 |
|
友情链接 |
首页 | 关于我们 | 联络我们 | 加入我们 | 服务条款 | 隐私声明 Copyright© 2024: ; All Rights Reserved. 粤公网安备 44030402004704号 备案序号:粤ICP备12025165号-4 |