编者按:这是关于电磁波暗室设计的两集系列之二。第一部分发表于2016年3/4月刊, 讨论了吸波器对矩形、远场区域的要求。第二部分讨论紧凑区域和近场测量。

电磁波暗室设计基本准则(二): 紧凑区域和近场测量

Basic Rules for Anechoic Chamber Design, Part Two: Compact Ranges and Near Field Measurements

作者: Vince Rodriguez, MI Technologies 公司;译者:车延博

既要全面地确定室内电磁波暗室的性能,又要避免不必要的花费或制定出矛盾的指标, 对于这个任务要求的洞察力,规范的制定者并不总是具备。虽然有一些文章和书籍¹³ 讨论 了电磁波暗室的设计,但是如果有一份简明扼要的参考信息和设计经验准则就更好了。本 系列的第二部分将专注于近场系统、紧凑区域和暗室的规模确定。正如第一部分所做,对 吸波器性能进行简单近似,从而得到了一系列有助于指定性能和设施规模的等式。

系列的第一部分确定了使用远场暗室的限制,主要与天线的可测电气尺寸相关。 如前所示,流行的卫星电视服务所用 18 英寸 碟形天线将几乎不可能在一个远场暗室中进 行测试。卫星服务工作于 18.55 GHz,碟形天 线的尺寸为 28.29 波长 (λ),因此远场约为 1600 λ 或 25.9 米 (84.8 英尺)。显然对于这 样一个电动的大型天线,室内的远场照射在 经济上是不可行的。对于这种天线,一个紧 凑区域或近场测量则更为合适。

图 1. 抛物柱面反射器的仿真结果,表现为右侧的平面波行为。

紧凑区域

虽然在天线的 IEEE 标准测试程序⁴ 中几 乎没有提及,但是紧凑区域(CR)已成为大 型天线电气测量的重要工具。CR 使用抛物面 反射器在被测天线 (AUT) 的位置形成平面 波照射。这个平面波模拟天线在远场中的场 分布。图1所示为一个抛物面反射器由位于 抛物面焦点的发射源照射。从反射器可以在 一个短距离内看到平面波的行为。反射器系 统是调节范围的控制因素。反射器必须足够 大,以便提供一个平面波来照射整个被测天 线,并且反射器应适当地终结。终结的目的 是减少终结抛物面的照射效果。终结反射器 的两种最常用方法是锯齿和卷边。在锯齿状 边缘反射器的情况下,锯齿可以在最低工作 频率的3λ和5λ之间。表1提供了一个反 射器的典型列表,给出它们的整体尺寸和频 率范围。请注意,随着频率的增加,反射器 变得更加高效。虽然一些反射器可以在毫米 波范围内运行良好,在制造和表面处理时应 特别小心,这是由于表面缺陷将会影响性能。

反射器尺寸是暗室宽度和高度的决定因 素。暗室的长度将受反射器的焦距影响。从

TechnicalFeature 技术特写

反射器的顶点到静默区域(QZ)的 距离由下式给出:

 $r = \frac{5}{3}f_1$

其中 f₁为反射器的焦距。参照卫 星电视天线,需要测试 25 米的远场 距离,可能希望用长暗室和长距离进 行 CR 测试。然而,表1及公式1表明, 61 厘米 QZ 的测试距离为3米。这对 测试卫星电视天线是足够的。

作为一条规则,一个 CR 暗室的 长度由以下公式给出:

$$L = R_{clr} + \frac{5}{3}f_l + \frac{1}{2}QZ + (2+t)\lambda \ (2$$

其中 R_{clr} 为反射器间隙。这包括 支持该反射器的机械结构,其区域从 60 厘米到 2米,取决于反射器的整 体尺寸。在一般情况下,在反射器背 后的墙上有一个小的吸波器,厚度通 常为 $\lambda/2$,仅覆盖墙壁的周长。参数 t 为端壁 (end wall)吸波器的厚度。

图 2. 反映反射器模式的典型紧凑区域布局图, (a) 侧视和 (b) 顶视。在 2 GHz, 侧壁、地面和顶面的能量入射衰减超过 40 分贝。

表1 市售的紧凑区域反射器						
QZ尺寸 (长度和直径) (cm)	反射器整体尺寸 (包含齿部) (cm)	齿部长度 (cm)	工作频率 (GHz)	焦距f ₁ (cm)		
61	216×188	38	4 to 200	182		
122	432×335	76	2 to 200	366		
182	488×416	76	2 to 200	366		
244	864×670	152	1 to 200	732		
366	975×833	152	1 to 200	732		

对于 CR,这是最关键的墙壁,应具 有最低的反射率;t的建议值不低于 3 至 4。

暗室的宽度计算采用公式(3)

 $W = CR_w + (4 + 2t)\lambda$ (3)

其中 CR_w 是反射器的整体宽度。 在反射器的每一侧从锯齿尖端到吸波 器尖端还有一个额外的 2λ,虽然在 某些情况下,每一侧上的间距可能仅 小到为一个波长。确定区域宽度的最 后一项是该吸波器的厚度。

> 远场区域, 顶面、地面 和侧壁上的 吸波器,应 厚到足够在 倾斜有限 角度时提供 良好的收发 分置的反射 性, 在 CR 内侧壁的吸 波器则不需 要这么厚。 图2给出了 一个典型的 CR 暗 室。 CR 反射器 的辐射模式

而对于

已被叠加在暗室图上。图中的反射 器提供了一个 3.66 米 × 1.82 米的椭 圆形 QZ。 QZ 的深度为 3.66 米, CR 重要的一面是, 它有一个定向性很 强的模式,具有超过25 dBi的指向 性。如图2所示,侧壁吸波器上的能 量入射已经在直接路径以下40分贝。 在 60 度入射时 1 λ 厚的吸波器将提 供10dB的吸收(见第一部分的图4, 发表在 2016 年 3/4 月)。综合反射率 与直射线和反射线之间的幅值差异, 得到的反射能量水平约为-50分贝。 反射器在近场使用,而反射器的辐射 模式是一个远场概念。然而,这种近 似是可以接受的,它提供了一个方法, 用来估计从反射器沿墙壁方向辐射能 量的水平。如图3所示,反射器将向 侧壁传送一些能量,可从反射器的远 场图案进行估计。

计算暗室高度的大小具有类似的 等式:

$$\mathbf{H} = \mathbf{CR}_{\mathbf{h}} + (2 + \mathbf{K} + 2\mathbf{t})\lambda \qquad (4)$$

其中 CR_h 是反射器的总高度。 反射器尖端与顶面吸波器尖端之间的 距离为2λ。参数 K 为反映地面和反 射器之间的距离的一个因子。对于地 面吸波器,我们需要在反射器边缘和 地板吸波器尖端之间有一个更大的分 离。这就降低了反射器馈送器与反射 器之间镜像点的入射角度,以减少

TechnicalFeature 技术特写

图 3. 从源喇叭相对时间的波传播 - (a) 6.6 纳秒 (b) 10.4 纳秒 (c) 11.3 纳秒 (d) 15.1 纳秒 - 相比远场模式。

地板反射对反射波的影响(见图 4)。 等式 4 包括地面吸波器尖端与锯齿尖 端之间的 K 波长的空间。馈送定位 器支撑着馈送天线照射反射器,K应 该足够大,为其提供足够的空间。正 如侧壁的情形一样,地面和顶面的吸 波器厚度可达 1λ 。必须要特别考虑 馈送器和反射器之间的地面吸波器, 其厚度可能达 2λ 。一般情况下,吸 波器在最低频率下的电厚度,对于侧 壁和顶面位置,可以分别按 t \leq 1.2、 t \geq 0.75 进行处理。

近场区域

近场测量已有不同的技术,它们 与所测量的天线的类型一致。所有的 方法都是在一个表面测量从 AUT 辐 射的场(幅值和相位),然后对测量 结果经数学推导得出远场特性。三 种不同的近场技术——平面(PNF)、 圆柱(CNF)和球面(SNF)——代 表了进行数据测量的表面^{7.9}。最基 本的近场测量方法是平面扫描,来自 天线的辐射在一个单独的平面进行扫 描。对高增益天线来说这是一个很好 的技术,因为仅有非常少量的能量辐 射到天线的背面。圆柱扫描是指场的 测量是在圆柱体的表面进行的,不包 括顶部和底部表面。这对长天线是理 想的,这种天线是全方位的,或在主 平面之一的波束宽,而在垂直平面的 波束窄。球面扫描是一种更为通用的 测量方法。此时场的测量是在包含 整个天线的球面进行的。总的来说, PNF 测量的测试距离在 3 λ 和 10 λ 之间。对于 SNF,探头可以更远。

除了测试距离外,为远场暗室开 发的相同等式可用于 SNF。在一般情 况下,给出等式:

$$\mathbf{L} = \mathbf{d}_{pp} + \left(\mathbf{n} + 6 + 2\mathbf{t}_{e}\right)\lambda \tag{5}$$

其中 d_{pp} 是探头(测量天线)及 其定位器的深度。变量 n 是包含 AUT 的最小球面的直径,用波长 表示。在两个端壁的吸波器厚度为 $T_e\lambda$,其中 t_e 为端壁吸波器的厚度, 用波长表示。按照惯例,在最小球 和吸波器尖端之间增加 2λ 。最后, 4λ 是探头与含天线的球之间的估计 距离。 SNF 暗室的宽度由下式给出:

$$W = (n + 4 + 2t_s)\lambda \tag{6}$$

在这种情况下,t_s为侧壁吸波器 的厚度,用波长表示。这是一个粗略 的近似。对于两个等式(5)和(6), 应增加至少1米来防止定位设备在它 旋转被测天线时击中探针。暗室还应 为在室内工作的人们设置测量装置提 供空间。这对更高频率(2GHz以上) 尤为重要,其中4λ间隔可能不足以 使定位器跳过探针。

入射到侧壁吸波器的角度为:

$$\theta = \arctan\left(\frac{4n+16}{2n+16}\right) \tag{7}$$

取极限, 当 N → ∞ 时, $\theta < 63.4$ 度。采用本系列文章第一部分的吸波 器近似,我们可以估计出 $t_s \approx 2t_e$ 。要 做到这一点,我们检查在正常入射时 端壁吸波器的反射率,选择吸波器的 厚度使其提供的反射率类似于 63.4 度入射角时的情况。顶面和地面将与 侧壁有相同的吸波器。

暗室高度可以用下式来估计:

$$H = h_{p} + (n + 4 + t_{s})\lambda$$
 (8)

其中变量 h_p 为定位设备的高度。 在一个典型的用于 SNF 测量的翻转 方位定位器中, h_p 应该包括地面升降 (floor slide)、方位定位器以及升降补 偿(offset slide)的高度。在远场暗 室等式或 CR 等式(除了馈送定位)中, 定位设备不是一个问题,因为其他尺 寸在这些区域(即远场测试距离或反 射器大小)是如此具有优势。

PNF系统使用一个平面扫描仪来 测量高定向度的天线(即增益>20 分贝)。AUT 的高增益有助于区域的 设计,由于区域的一些边界不需要经 过吸波器处理,比如 AUT 背后。如 上所述,测试距离在3λ和10λ之间。 确定 PNF 范围大小的主导因素是扫 描仪,其扫描尺寸由下式给出:

 $\mathbf{L}_{\mathbf{x}} = \left(\mathbf{n} + 2\mathbf{k}\tan\left(\mathbf{\theta}_{\mathbf{s}}\right)\right)\boldsymbol{\lambda} \tag{9}$

θ_s是精确远场的最大角度, nλ
是被测天线的电尺寸(见图 5)。变
量 k 是用波长表示的测试距离;因此,
3 < k < 10。物理扫描仪通常会略大于

扫描平面。通常情况下,到吸波器尖 端的间隔为2入。

区域宽度变成:

$$W = \left(n + 2k \tan(\theta_s) + 4 + 2t_s\right)\lambda + \Delta_{sen}$$
(10)

这可以写成:

$$W=L_{x}+(4+2t_{s})\lambda+\Delta_{scn} \qquad (11)$$

其中 Δ_{scn} 是扫描仪结构所需的额外空间, t_s 为吸波器的厚度。

区域长度由以下公式给出:

$$\mathbf{L} = \mathbf{S}_{clr} + \mathbf{A}_{d} + (4 + \mathbf{k} + \mathbf{t})\lambda \quad (12)$$

图 6. 若干测试距离下侧壁吸波器的入射角与精确 远场模式最大角度的关系,天线孔径为20λ。

图 5. 近场测量平面的几何图形。

其中 S_{ctr} 是扫描仪的深度,其中 应包括到吸波器的间隔(如果有的 话,扫描仪可以被放置得离尖端非常 靠近)和探针的长度。 A_d 是 AUT 和 支撑结构的深度,后者使天线对准扫 描仪。公式(12)中的4 λ 是 AUT 背 部和区域墙之间的空间。对于增益非 常高的天线,这个墙壁不需要吸波器 处理。如果希望有吸波器,吸波器的 厚度可以小到 $\lambda/4$ 。扫描仪上背后墙 壁上吸波器的厚度利用了用于扫描平 面的探针的方向性。因此,t ≥ 2 。

其余需要定义的变量是侧壁上的 吸波器。这依赖于角度 θ_s和因子 K。 宽度近似为:

W≈
$$(n+2ktan(\theta_s)+4+2t_s)\lambda$$
 (13)
利用以下近似

$$(n+2k\tan(\theta_s)+4+2t_s)\lambda > \Delta_{sen}$$
 (14)

得到侧壁上的入射角:

$$\theta = \arctan\left(\frac{k}{kn + k\tan(\theta_s) + 4}\right)$$
 (15)

注意入射角只取决于 AUT 的大 小、精确远场的最大角度以及以波长 表示的测试距离。图 6 表明,即使在 10 λ 的测试距离,最大入射角度接 近 20 度。根据第一部分所提出的吸 波器近似,某些电厚度的吸波器,其 在一个给定瓣的反射率在入射角的区 域内不会恶化太多。如果 AUT 是一 个简单的无源天线,高增益可能有益。 由于天线不会向侧壁辐射太多的能 量,可以使用一个较小的吸波器(t <

MEDs Technologies focuses on creating values for our partners. With our professional technical sales team and in-house design team, we will be a valuable resources to your company. Our aim is to provide the best value added services in the industry we served.

Processes provided through MEDs

2016 GaAs MPW Fabrication Schedule

Scheduled multi-project wafer fabrication runs						
Process	January	February	March			
0.15µm LNA	15 th		15 th			
0.15µm PA		15 th				
0.10µm PA	20 th		20 th			
0.25µm PA		20 th				
Process	April	May	June			
0.15µm LNA		15 th				
0.15µm PA	15 th		15 th			
0.10µm PA		20 th				
0.25µm PA	20 th		20 th			
Process	July	August	September			
0.15µm LNA	15 th		15 th			
0.15µm LNA 0.15µm PA	15 th	15 th	15 th			
0.15µm LNA 0.15µm PA 0.10µm PA	15 th 20 th	15 th	15 th 20 th			
0.15µm LNA 0.15µm PA 0.10µm PA 0.25µm PA	15 th 20 th	15 th	15 th 20 th			
0.15µm LNA 0.15µm PA 0.10µm PA 0.25µm PA Process	15 th 20 th October	15 th 20 th November	15 th 20 th December			
0.15µm LNA 0.15µm PA 0.10µm PA 0.25µm PA Process 0.15µm LNA	15 th 20 th October	15 th 20 th November 15 th	15 th 20 th December			
0.15µm LNA 0.15µm PA 0.10µm PA 0.25µm PA Process 0.15µm LNA 0.15µm PA	15 th 20 th October 15 th	15 th 20 th November 15 th 15 th	15 th 20 th December			
0.15µm LNA 0.15µm PA 0.25µm PA Process 0.15µm LNA 0.15µm PA 0.10µm PA	15 th 20 th October 15 th	15 th 20 th November 15 th 15 th 20 th	15 th 20 th December			

MPW size is 4 x 5 mm, 20 tiles will be supplied.
If singular die is needed, layout in the 4x5mm area should be in grid form. Additional cost may apply for Pick & Place into gelpak.
The date shown is the Tapeout date and GDSII needs to be

submitted 1 week ahead. Interested customers need to book the space one month in advance. Term and conditions apply.

2016 TSMC CyberShuttle Service Plan

Processes: RF HPC Plus (0.9/1.8V, 0.9/2.5V); RF HPC (0.9/1.8V, 0.9/2.5V); RF LP (1.05V/1.8V); RF HPL (1.0/1.8V, 1.0/2.5V) Schedule: Jan-20/Feb-17/Mar-16/Apr-20/May-18/Jun-15

2016 AMS MPW Shuttle Service

Process	Technology	Schedule	Schedule
H18	0.18 µm HV-CMOS	Feb-29	May-30
C18	0.18 µm CMOS	Feb-29	May-30
H35	0.35 μm HV-CMOS	Feb-22	May-9
C35	0.35 µm CMOS	Feb-1	Jun-20
C35	0.35 µm CMOS Fraunhofer IIS	Apr-18	Aug-1
S35	0.35 µm SiGe-BiCMOS	Mar-7	Jun-13
Process	Technology	Schedule	Schedule
Process H18	Technology 0.18 µm HV-CMOS	Schedule Aug-29	Schedule Dec-5
Process H18 C18	Technology 0.18 μm HV-CMOS 0.18 μm CMOS	Schedule Aug-29 Aug-29	Schedule Dec-5 Dec-5
Process H18 C18 H35	Technology 0.18 μm HV-CMOS 0.18 μm CMOS 0.35 μm HV-CMOS	Schedule Aug-29 Aug-29 Aug-22	Schedule Dec-5 Dec-5 Nov-7
Process H18 C18 H35 C35	Technology 0.18 μm HV-CMOS 0.18 μm CMOS 0.35 μm HV-CMOS 0.35 μm CMOS	Schedule Aug-29 Aug-29 Aug-22 Oct-3	Schedule Dec-5 Dec-5 Nov-7
Process H18 C18 H35 C35	Technology 0.18 µm HV-CMOS 0.18 µm CMOS 0.35 µm HV-CMOS 0.35 µm CMOS 0.35 µm CMOS Fraunhofer IIS	Schedule Aug-29 Aug-29 Aug-22 Oct-3 Nov-21	Schedule Dec-5 Dec-5 Nov-7

Other Available Processes

GlobalFoundries 0.13µm / 0.18µm 7SW SOI processes are available upon request.

上海劢仕电子有限公司 (MEDs上海辦事處) Website: http://www.meds-tech.com Email:Zhangxh.cn@meds-tech.com Tel: +86-21-5674-8687 | Mobile: +86-137-0189-7519

TechnicalFeature 技术特写

1)。然而,如果 AUT 是一个带有波束的复杂天线,则 侧壁的厚度应该更大 $(t \ge 2)$ 。

暗室高度的计算应按与宽度计算相同的方式。在 某些情况下,垂直和水平的扫描距离不同,这对于非 正方形横截面的暗室是不少见的。高度的等式是:

 $H = L_v + y_o + (2 + t_s)\lambda$ (16)

这里 y。是探针的最小高度,即在垂直运动底部的 探针位置。这包括水平轴移动扫描仪所在的导轨,也 应足够大到包括地面吸波器;至少 y_o>t_xλ。

上述关于 SNF 和 PNF 区域的规则可以结合得到 一个 CNF 系统的范围大小。

结论

本系列文章的第二部分提供了一些规则概述和 物理机理,对用于紧凑区域和近场扫描测量的室内暗 室,指导其选择和确定大小。所有等式都是近似的。 长度在大多数情况下是一个最小值;对于加载和卸载 AUT、改变馈送和区域天线以及连接其他设备,可能 需要更多的空间。这一系列文章的两个部分都提供了 概述和等式,对于采用当前最常见的天线测量方法的 暗室,用于确定其大小。■

参考文献

- 1. L. Hemming, "Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide," IEEE Press/Wiley Interscience: Piscataway, N.J., 2002.
- 2. G. Sanchez and P. Connor, "How Much is a dB Worth?," 23rd Annual Symposium of the Antenna Measurement Techniques Association (AMTA), Denver, Colo., October 2001
- 3. J. Hansen and V. Rodriguez, "Evaluate Antenna Measurement Methods," Microwaves and RF, October 2010, pp. 62267.
- ANSI/IEEE STD 149-1979 149-1979 -IEEE Standard Test Procedures for Antennas, 1979, reaffirmed 2008
- 5. J.R.J. Gau, D. Burnside and M. Gilreath "Chebyshev Multilevel Absorber Design Concept," IEEE Transactions On Antennas Propagat., Vol. 45, No. 8, pp. 128621293, 1997
- 6. T.H. Lee and W. Burnside, "Performance Trade-Off Between Serrated Edge and Blended Rolled Edge Compact Range Reflectors," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 1, January 1996, pp. 87296.
- D. Hess, "Near-Field Measurement Experience at Scientific Atlanta," White Paper, www.mitechnologies.com/ papers/91/Near-Field%20Measurement% 20Experience%20 at%20Scientific-Atlanta.pdf.
- 8. Yaghjian, "An Overview of Near-Field Antenna Measurements," IEEE Transactions on Antennas and Propagation, Vol. AP-34, No. 1, January 1986, pp. 30245.
- 9. J. E. Hansen ed., "Spherical Near-Field Antenna Measurements," IEEE Peter Peregrinus Ltd.: London, UK, 1988.