利用扩展的电阻-电抗连续F类模式 设计宽带功率放大器

Broadband Power Amplifier Design Using Extended Resistive-Reactive Continuous Class F Modes

Gang Liu、Fuqi Mu、Yongqing Leng、Yang Li、Xinli Cui、中科院微电子研究所和中国科 学院大学

本文介绍了一种提高功率放大器 (PA) 带宽的方法, 该功率放大器采用电阻-电抗连 续F类模式串联 (SCFM) 形式设计。通过将三次谐波负载引入电阻-电抗SCFM PA、解决 了基波和谐波阻抗之间的重叠,并提高了带宽。利用这种方法,作者设计了工作频率在0.5 至2.3GHz的高效PA,实验结果显示该PA实现了10W的输出功率,且从0.5到2.3GHz的漏极 效率可达59%至79%。

р 着无线通信技术的快速发展,下一代无线系统需要更宽的带宽来实现更高的数据传 输速率。作为关键的传输器件, PA需要在更宽 的带宽内具有更高的效率,并且能符合多种标 准。

近年来,已经有许多研究探索了提高PA 带宽和效率的方法。2009年, S. C. Cripps¹提出 连续模式PA,通过适当引入电抗类的二次和三 次谐波来解决传统开关模式PA的带宽限制。随 后,连续B/J类、连续F类和逆F类PA依次被提出 ²⁻⁶。理论上,由于史密斯圆图边缘的谐波阻抗, 连续B/J类、连续F类和逆F类PA模式的最大带宽 被限制在一个倍频程内。因此, 谐波负载的这

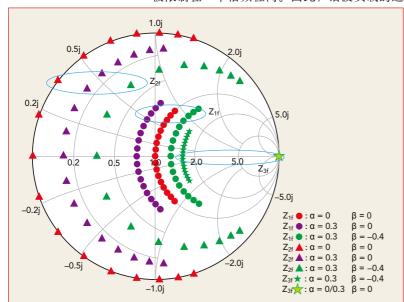


图1: 基波和谐波阻抗随α和β的变化情况。

一严格限制导致PA难以实现多倍频程性能。Lu 和Chen⁷在2013年提出了电阻-电抗连续模式串联 的方法,向连续模式中引入电阻类谐波阻抗, 以缓解对于谐波负载的严格限制8-9。利用这种 方法,通过引入电阻可以使带宽超过一个倍频 程,同时二次谐波负载还具有了更广泛的基波 阻抗空间,进一步提高了宽带PA的带宽。逆连 续模式的电阻-电抗串联PA由Li等人⁹提出,揭示 了设计宽带PA的类似方法。

本文中,扩展的数学公式用于电阻-电抗 SCFM分析。通过引入三次谐波阻抗进一步拓展 了设计空间,在设计高效率、多倍频程PA时提 供了更大的自由度。

扩展的电阻-电抗SCFM

传统的电阻-电抗SCFM在器件的固有电流 产生器平面具有半波整流的正弦电流波形,即 如下形式的 $i_d(\theta)$:

$$i_{ds_SCFMs} = \frac{1}{\pi} + \frac{1}{2}\cos\theta + \frac{2}{3\pi}\cos 2\theta + L$$
 (1)

电压波形v_d(θ)不再严格限制为方波,且包 括一组取决于参数α和γ的变量:

$$v_{ds}(\theta) = \left(1 - \frac{2}{\sqrt{3}}\cos\theta + \frac{1}{3\sqrt{3}}\cos 3\theta\right)$$

$$(1 - \gamma\sin\theta)$$

$$x(1 + \alpha\cos\theta)$$
(2)

通过将电阻-电抗SCFM的电流波形乘以参数 (1+βcosθ),以引入电阻三次谐波阻抗,同时 保持电压波形不变。新的电流波形将可表示为:

射频与微波开关

从虹科选择你需要的**射频与微波**开关

- 包括PXI、LXI和USB版本
- 直流到65GHz带宽
- 关键开关拓扑 转换、传递、多路复用器和矩阵
- PXI模块均可插入任何公司的PXI或PXIe混合机箱, 以及我们以太网控制的LXI和LXI/USB模块化开关 机箱
- 超过300种射频与微波产品可选
- 大多数微波模块带有LED指示灯
- 保证长期支持,通常15至20年
- 30年的开关经验, 20+年的PXI经验和13年的LXI经 验,还有强大的全球客户基础

pickering

Pickering Interfaces 品英仪器

| 可编程电阻

加关注

需要详细资料? 请现在通过 sales@hkaco.com 联系我们 | 免费电话: 400-999-3848

办事处:广州 | 北京 | 上海 | 深圳 | 武汉 | 西安 | 成都 | 台湾 | 香港 | 美国

TechnicalFeature 技术特写

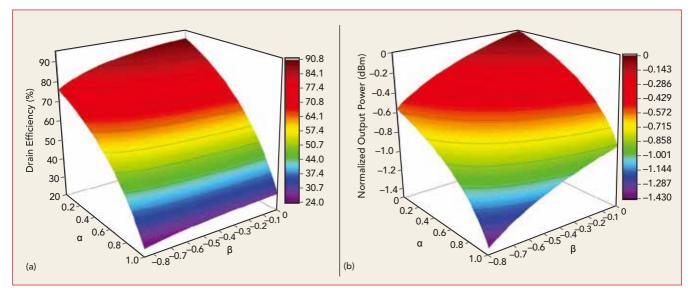


图2:漏极效率 (a) 和归一化输出功率 (b) 随α和β的变化情况。

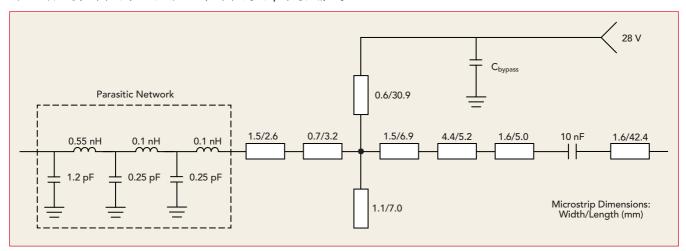


图3: 输出匹配网络。

$$i_{ds} = \left(\frac{1}{\pi} + \frac{1}{2}\cos\theta + \frac{2}{3\pi}\cos 2\theta\right)$$

$$(1 + \beta\cos\theta)$$
(3)

这样,即可得到具有电阻性二次和 三次谐波阻抗的替代阻抗解决方案。通 过将电压除以电流可计算在每个谐波处 呈现的负载阻抗。这里, Z,被指定为n次 谐波阻抗。因此, 归一化谐波阻抗可以 通过以下公式计算:

$$Z_{1} = 3\sqrt{3\pi}$$

$$\left(\left(\frac{2}{\sqrt{3}} - \alpha\right) + j\left(1 - \frac{7}{12\sqrt{3}}\alpha\right)\gamma\right) / (6\pi + 16\beta)$$
(4)

$$Z_{2} = 3\sqrt{3\pi} \left(\frac{5}{6\sqrt{3}} \alpha + j \frac{1}{2} \left(\frac{7}{3\sqrt{3}} - \alpha \right) \gamma \right) / (8 + 3\pi\beta)$$
(5)

$$i_{ds} = \left(\frac{1}{\pi} + \frac{1}{2}\cos\theta + \frac{2}{3\pi}\cos 2\theta\right)$$
 $Z_3 = -3\sqrt{3\pi}\left(\frac{1}{3\sqrt{3}} + j\frac{1}{2\sqrt{3}}\alpha\gamma\right)/4\beta$ (6)

 Z_1 、 Z_2 和 Z_3 的取值取决于条件 $0 \le \alpha \le 1$ 及-8/3π≤β≤0能否实现。图1给出了基波和 谐波阻抗相对于α和β的变化。二次谐波 区域随着α和β的变化向基波区域移动, 三次谐波区域随着β的减小趋于基波区 域。该特性使得我们可以在多倍频程设 计中解决基波和谐波阻抗之间的重叠。

表 1 PA性能对比				
Reference	Mode	Bandwidth (GHz) (%)	P _{out} (dBm)	Drain Efficiency (%)
3	SCM	1.6 to 2.8 54.5	39.1 to 41.5	67 to 82
6	SCIM	2.4 to 3.9 47.6	39.9 to 41.3	62.2 to 75
8	ResRea. SCM	0.5 to 1.3 88.9	39.0 to 41.4	70 to 87
9	ResRea. SCIM	2.4 to 3.75 44	40.8 to 42.2	66 to 71
This Work	ResRea. SCFM	0.5 to 2.3 129	39.4 to 41.6	59 to 79

GPS 驯服 10 MHz 频率基准 ...

...还有更多!

- GPS/GNSS 驯服 10 MHz
- TCXO, OCXO 或 Rb 时基
- 相对 GPS 和 UTC 时间标记
- 具12位数/秒的频率计数器
- 信号源: 正弦, 方形, 三角形 & IRIG-B
- 内置分配放大器
- 以太网和RS-232接口

此 FS740 GPS 驯服 10 MHz 频率参考以铯基 准的零头价格提供与其相当的稳定性和相 位噪声。

其主要功能包括:一个12位/秒的频率 计数器、具有可调频率和幅度的DDS合 成源、内置分配放大器、以及相对于UTC 或GPS的事件时间标记。

可选的OCXO或铷钟(PRS10)提供优于 -130 dBc / Hz的相位噪声。

FS740 ... 2745 美元 (全球通价格)

Tel: (408) 744-9040 • www.thinkSRS.com www.thinkSRS.com/products/FS740.htm

TechnicalFeature 技术特写

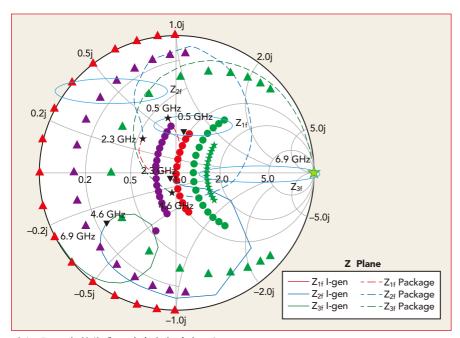


图4: I-gen和封装平面的基波和谐波阻抗。

漏极效率可以由公式2和3计算得到:

$$DE = \frac{2 - \sqrt{3\alpha}}{\sqrt{3 - \alpha}} \times \frac{3\pi + 8\beta}{12 + 3\pi\beta}$$
 (7)

漏极效率是α和β的函数。漏极效率 和输出功率相对于α和β的变化情况如图2 所示。α和β的变化应限制在有效的区域 内,这样在输出功率略有下降的情况下 仍能实现可以接受的漏极效率。在本文 的设计中,选择 $0\leq \alpha \leq 0.4$ 和 $-0.4\leq \beta \leq 0$ 的条 件范围以实现大干65%的漏极效率。

仿真和测量

为了验证这种方法的有效性,作者 使用Wolfspeed CGH40010F GaN晶体管设 计了工作频率在0.5至2.3 GHz的电阻-电抗 SCFM PA, 其工作在28V和68mA的静态漏 极偏置状态下,基板介质为Rogers 4350B (ε_r=3.66) , 厚30mil, 金属层厚35μm。

通过从高频到低频的迭代过程可以

实现谐波负载牵引仿真, 进而获得最佳 负载阻抗, 其中, 在高频处获得的阻抗 用于终止低频谐波。重复这一过程直至 获得最佳负载阻抗。输出匹配网络采用 实频直接计算技术设计10。图3给出了这 一设计的宽带输出匹配网络。由于输入 谐波阻抗对PA性能的影响很小11,因此 在设计输入匹配网络时, 更多的关注点 应放在基波匹配。

目前广泛使用的CGH40010F晶体 管的寄生网络的精确模型由Tasker和 Benedikt推导得到12。基于这种寄生网络 模型, 在I-gen和输出匹配网络的封装平 面上, 史密斯圆图中的阻抗轨迹在图4中 给出。在0.5至2.3GHz的工作频带内, 计 算得到的电流平面基波阻抗保持在理论 区域内或附近范围。

电阻-电抗SCFM PA的最终设计如 图5所示。在连续输入功率为29dBm的 情况下, 仿真和实验结果如图6所示。

在0.5至2.3GHz频率范围内,漏极效率 为59%到79%, 饱和输出功率为39.4至 41.6dBm。实验结果与仿真结果一致。

为了表征PA的线性度, 我们使用峰 值平均功率比约为7.5dB的20MHz LTE信 号在0.8、1、1.6以及2 GHz驱动PA。如 图7所示,宽带PA在约5dB饱和余度功率 下表现出良好的线性度, 其中相邻信道 的泄露功率比(ACLR)低于-30dBc, 平均效率为34.1至49.1%。表1对比了该 PA与其他类似先进宽带PA的性能。

结论

通过引入三次谐波阻抗扩展了电 阻-电抗SCFM的设计空间。利用这种方 法,有效解决了基波和谐波阻抗之间的 重叠。本文就利用这种方法设计、构建 并测试了一个宽带高效的PA。实验和仿 真结果的吻合验证了这种方法对于设计 多倍频程、高效PA的有效性。在20MHz LTE信号的驱动下, 所提出PA的ACLR 在输出功率约为35dBm的情况下低于 30dBc, 平均漏极效率高于34%。■

致谢

本研究由国家自然科学基金项目 (61501455)、北京市自然科学基金项 目(4162068)、中国科学院国防科技创 新基金项目 (CXJJ-16M124) 资助。

参考文献

- 1. S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, "On the Continuity of High Efficiency Modes in Linear RF Power Amplifiers," IEEE Microwave & Wireless Components Letters, Vol. 19, No. 10, October 2009, pp. 665-667.
- P. Wright, J. Lees, J. Benedikt, P. J. Tasker and S. C. Cripps, "A Methodology for Realizing High Efficiency Class-J in a Linear and Broadband PA," IEEE Transactions on Microwave Theory & Techniques, Vol. 57, No. 12, December 2009, pp. 3196-3204.
- J. Chen, S. He, F. You, R. Tong and R. Peng, "Design of Broadband High-Efficiency Power Amplifiers Based on a Series of Continuous Modes," IEEE Microwave & Wireless Components Letters, Vol. 24, No. 9, September 2014, pp. 631-633.
- V. Carrubba, J. Lees, J. Benedikt, P. J. Tasker and S. C. Cripps, "A Novel Highly Efficient Broadband Continuous

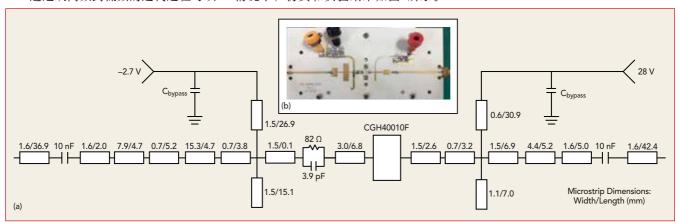
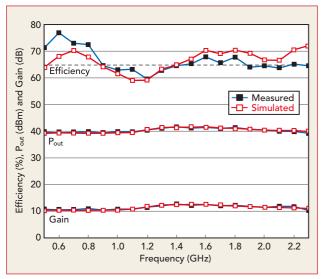


图5: PA原理图 (a) 及实物图 (b)。

130款不同的数字化仪

- 5 MS/s至5 GS/s的速度
- 1至8通道(卡)
- Star-Hub模块,最多可同步16张卡
- 2至48个通道(以太网/LXI仪器)
- 多达20条多功能输入/输出线
- 包括快速先入先出流模式


45款不同的AWG ■ 40 MS/s至1.25 GS/s的速度 ▶ 1至8通道(卡) ■ Star-Hub模块,最多可同步16张卡 2至48个通道(以太网/LXI仪器) ▶ 多达20条多功能输入/输出线 ■ 包括快速先入先出流模式

完美适配 - 模块化设计的解决方案

TechnicalFeature 技术特写

--- 0.8 GHz 60 -15 ▲ 1.0 GHz Adjacent Channel Leakage Ratio (dBc) -**□--** 2.0 GHz 50 -20 Hollow: ACLR Left 8 Solid: ACLR Right Average Drain Efficiency 40 -25 30 -30 -35 20 40 10 -45 0 36 30 31 32 33 34 35 Average Output Power (dBm)

图6: 输出功率、效率及增益的仿真及测试结果对比。

图7: 20MHz LTE信号驱动下PA的ACLR和平均漏极效率的测试结果。

Class-F RFPA Delivering 74% Average Efficiency for an Octave Bandwidth," IEEE MTT-S IMS Digest, June 2011.

- V. Carrubba, A. L. Clarke, M. Akmal, Z. Yusoff, J Lees, J. Benedikt, S. C. Cripps and P. J. Tasker, "Exploring the Design Space for Broadband PAs Using the Novel 'Continuous Inverse Class-F Mode'," 41st European Microwave Conference, October 2011.
- W. Shi, S. He and Q. Li, "A Series of Inverse Continuous Modes for Designing Broadband Power Amplifiers," IEEE Microwave & Wireless Components Letters, Vol. 26, No. 7, July 2016, pp. 525–527.
- 7. Z. Lu and W. Chen, "Resistive Second-Harmonic
- Impedance Continuous Class-F Power Amplifier with Over One Octave Bandwidth for Cognitive Radios," IEEE Journal on Emerging & Selected Topics in Circuits & Systems, Vol. 3, No. 4, December 2013, pp.489–497.
- C. Friesicke, R. Quay and A. F. Jacob, "The Resistive-Reactive Class-J Power Amplifier Mode," IEEE Microwave & Wireless Components Letters, Vol. 25, No. 10, October 2015, pp. 666–668.
- Q. Li, S. He, Z. Dai and W. Shi, "A Method for Designing Generalized Continuous Power Amplifier," IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, July 2016.
- N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, "A Simplified Broadband Design Methodology for Linearized High Efficiency Continuous Class-F Power Amplifiers," IEEE Transactions on Microwave Theory & Techniques, Vol. 60, No. 6, March 2012, pp. 1952–1963.
- J. Moon, J. Kim and B. Kim, "Investigation of a Class-J Power Amplifier With a Nonlinear Cout for Optimized Operation," IEEE Transactions on Microwave Theory & Techniques, Vol. 58, No. 11, November 2010, pp. 2800–2811.
- P. J. Tasker and J. Benedikt, "Waveform Inspired Models and the Harmonic Balance Emulator," IEEE Microwave Magazine, Vol.12, No. 2, April 2011, pp. 38–54.

网址: www.shx-sh.com 邮箱: shx@shhuaxiang.sina.net